skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Knudsen, Ben"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We show that, up to small error, the analog category of a finite group records the size of its largest Sylow subgroup. 
    more » « less
    Free, publicly-accessible full text available November 22, 2025
  2. Abstract We formulate a categorification of Robertson’s conjecture analogous to the categorical graph minor conjecture of Miyata–Proudfoot–Ramos. We show that these conjectures imply the existence of a finite list of atomic graphs generating the homology of configuration spaces of graphs—in fixed degree, with a fixed number of particles, under topological embeddings. We explain how the simplest case of our conjecture follows from work of Barter and Proudfoot–Ramos, implying that the category of cographs is Noetherian, a result of potential independent interest. 
    more » « less
    Free, publicly-accessible full text available November 1, 2025
  3. We study probabilistic variants of the Lusternik–Schnirelmann category and topological complexity, which bound the classical invariants from below. We present a number of computations illustrating both wide agreement and wide disagreement with the classical notions. In the aspherical case, where our invariants are group invariants, we establish a counterpart of the Eilenberg– Ganea theorem in the torsion-free case, as well as a contrasting universal upper bound in the finite case. 
    more » « less
  4. One of the most famous results in graph theory is that of Kuratowski’s theorem, which states that a graph $$G$$ is non-planar if and only if it contains one of $$K_{3,3}$$ or $$K_5$$ as a topological minor. That is, if some subdivision of either $$K_{3,3}$$ or $$K_5$$ appears as a subgraph of $$G$$. In this case we say that the question of planarity is determined by a finite set of forbidden (topological) minors. A conjecture of Robertson, whose proof was recently announced by Liu and Thomas, characterizes the kinds of graph theoretic properties that can be determined by finitely many forbidden minors. In this extended abstract we will present a categorical version of Robertson’s conjecture, which we have proven in certain cases. We will then illustrate how this categorification, if proven in all cases, would imply many non-trivial statements in the topology of graph configuration spaces. 
    more » « less
  5. Abstract We prove Farber’s conjecture on the stable topological complexity of configuration spaces of graphs. The conjecture follows from a general lower bound derived from recent insights into the topological complexity of aspherical spaces. Our arguments apply equally to higher topological complexity. 
    more » « less